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INTRODUCTION

In my PhD. dissertation, I focus on action planning and
constrained discrete optimization. I try to introduce novel
approaches to the field of single-agent planning by com-
bining standard techniques with meta-heuristic optimiza-
tion, machine-learning algorithms, hyper-heuristics and al-
gorithm selection approaches.

Our main goal is to create new and flexible planning algo-
rithms which would be suited for a large variety of real-life
problems. Planning is a fundamental and difficult problem
in Al and any new results in this area are directly applica-
ble to many other fields. They can be used for single-agent
or multi-agent action selection in both competitive or coop-
erative environment and as we focus on optimization, our
techniques are suitable for real-life problems that arise in
robotics or transportation.

BACKGROUND

In this section, we provide a brief description of notions and
research topics that we refer to later in the paper.

Planning

Planning deals with problems of selection and causally or-
dering of actions to achieve a given goal from a known ini-
tial situation. Planning algorithms assume a description of
possible actions and attributes of the world states in some
modelling language such as Planning Domain Description
Language (PDDL) as its input. This makes the planning al-
gorithms general and applicable to any planning problem
starting from building blocks to towers and finishing with
planning transport of goods between warehouses (Ghallab,
Nau, and Traverso 2004).

A state which satisfies the goal condition is called a goal
state, a sequence of actions (aq, ..., a,) is called a plan, if
executing these actions one by one starting in the initial state
leads to some goal state.

There are two different kinds of planning tasks - in the sat-
isficing planning, we are interested in finding just any plan,
while in the optimization planning we want to find a plan
which minimizes given objective function.
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In the satisficing planning, however, we still consider
some solutions to be better than others, for example we pre-
fer shorter plans. An example of a satisficing planning task
might be a Sokoban problem or a Rubik’s cube. The typical
representatives of an optimization planning are transporta-
tion problems, where the task is to deliver some goods to
specific locations and minimize the time requirement and
fuel consumption.

Meta-heuristics

Meta-heuristics (or Modern heuristics) are optimization al-
gorithms that don’t guarantee finding optimal solutions, but
can often find high-quality solutions with reasonable search
effort (Rothlauf 2011). Examples of popular meta-heuristics
are Genetic Algorithms, Particle Swarm Optimization, Ant
Colony Optimization, Simulated Annealing, and others.

Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is a stochastic optimiza-
tion algorithm that combines classical tree search with ran-
dom sampling of the search space. The algorithm was orig-
inally used in the field of game playing where it became
very popular, especially for games Go and Hex. A single
player variant has been developed by Schadd et al. (Schadd
et al. 2008) which is designed specifically for single-player
games and can also be applied to optimization problems.
The MCTS algorithm successively builds an asymmetric
tree to represent the search space by repeatedly performing
the following four steps:

1. Selection — The tree built so far is traversed from the root
to a leaf using some criterion (called tree policy) to select
the most urgent leaf.

2. Expansion — All applicable actions for the selected leaf
node are applied and the resulting states are added to the
tree as successors of the selected node (sometimes differ-
ent strategies are used).

3. Simulation — A pseudo-random simulation is run from the
selected node until some final state is reached (a state that
has no successors). During the simulation the actions are
selected by a simulation policy,

4. Update/Back-propagation — The result of the simulation
is propagated back in the tree from the selected node to



the root and statistics of the nodes on this path are updated
according to the result.

The core schema of MCTS is shown at Figure 1 from
(Chaslot et al. 2008).
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Figure 1: Basic schema of MCTS (Chaslot et al. 2008)

One of the most important parts of the algorithm is the
node selection criterion. It determines which node will be
expanded and therefore it affects the shape of the search tree.
The purpose of the tree policy is to solve the exploration vs.
exploitation dilemma.

Commonly used policies are based on a so called ban-
dit problem and Upper Confidence Bounds for Trees (Auer,
Cesa-Bianchi, and Fischer 2002; Kocsis and Szepesvari
2006) which provide a theoretical background to measure
quality of policies. We use standard tree policy for the
single-player variant of MCTS (SP-MCTS) due to Schadd
et al. (Schadd et al. 2008) that is appropriate for planning
problems.

The behaviour of MCTS can be seen on an example in
figure 2. In the yellow field there is a function to be mini-
mized and above it there is a tree build by MCTS algorithm.
Function values are used as results of the simulations. We
can see that the algorithm identifies promising regions and
focuses the sampling on these regions.
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Figure 2: Simple example of MCTS tree

Algorithm selection

Algorithm selection is a relatively new field which deals
with the problem of selecting the right algorithm for spec-
ified task. Currently, the research in this area focuses mostly

on selecting classification algorithms. It has also been used
to select search algorithms for SAT instances.

The algorithm selection problem is closely related to
hyper-heuristics and parameter tuning. Hyper-heuristics
search for the best search algorithm for given problem in-
stance by combining so called low level heuristics. This way
the algorithm can find appropriate search technique on its
own rather than letting a human expert to design the search
strategy which might lead to better results.

MOTIVATION

Currently, the most efficient domain independent approach
to solve planning problems is heuristic forward search. In
the paper (Toropila et al. 2012), we showed that classical do-
main independent planners are not competitive when solving
a real-life transportation planning problem of the Petrobras
company (Vaquero et al. 2012). The paper proposed an ad-
hoc Monte Carlo Tree Search (MCTS) algorithm that beat
the winning classical planner SGPIan in terms of problems
solved and solution quality.

We believe, that there are many more planning domains
where classical planners wouldn’t perform well and differ-
ent techniques are needed. The reason for this is that classi-
cal planners focus on hard artificial domains, where finding
even suboptimal solutions is difficult (like Sokoban), or on
finding optimal solutions to less difficult problems (Optimal
track on the IPC (Olaya, L6pez, and Jiménez visited Decem-
ber 10 2014)).

Real-life problems, however, don’t really fit in any of
those categories. Finding suboptimal solutions is usually
easy in practical problems and the optimization part is the
real issue, but we might not want to guarantee optimality,
since it would take too much time.

Consider the following example: the Travelling Salesman
Problem (TSP) can be modelled as a classical planning prob-
lem. State-of-the-art techniques for solving TSP are based
on meta-heuristics, which don’t guarantee finding the opti-
mal solution, but can find high-quality solutions in a reason-
able time.

Classical planner, however, would use an A* algorithm,
which is not well suited for this problem. Although this ex-
ample seems far-fetched, practically motivated planning do-
mains often involve some kind of transportation therefore
optimization planning might be close to solving some con-
strained version of TSP.

There is also the issue of domain-independence. The
PDDL language is very general and can describe all kinds
of problems. It can be compared to General Game Playing
(GGP) (Genesereth, Love, and Pell 2005) - a logic-based for-
malism to describe rules of combinatorial games like chess,
go and others.

Several GGP algorithms exist which take description of
a game is their input and are able to play any game that
can be described in GGP. Such GGP players, however, are
far less efficient than engines specialized to just one game
(like chess engines). Domain specific engines often use very
different algorithms, for example chess engines are based
on the alpha-beta algorithm while the best Go engines use



MCTS. Obviously, different problems require different tech-
niques so it is important to select the proper search algo-
rithm.

To sum up, the current planning techniques use mostly A *
and its variants and focus on hard satisficing problems rather
than optimization. Those techniques are quite rigid as they
use the same algorithm on all domains. Research in the area
focuses mostly on developing new heuristic estimators for
A*

OUTLINE OF OBJECTIVES

The main objective of our research is to combine standard
planning algorithms with optimization meta-heuristics and
other techniques of soft-computing. There are three funda-
mental ways to do that

1. use meta-heuristics as a preprocessing to improve the per-
formance of standard techniques.
We have already published two papers that fall into this
category (Trunda and Bartdk 2014; Trunda 2014) and we
believe that there are many more opportunities to improve
standard planners in this manner.
For example, a Symbolic search algorithm works with Bi-
nary decision diagrams (BDDs) and the efficiency of this
data structure is highly dependent on the ordering of vari-
ables (which is problem-dependent). Finding some good
ordering before the actual search is a typical example of
an optimization preprocessing.
We believe that such optimizations are important in order
to make the planning system flexible, robust and efficient.

2. use meta-heuristics to solve the planning problems di-
rectly
We already have some experience with using MCTS for
planning (Toropila et al. 2012; Trunda and Bartdk 2013).
We would like to work further in this area and also find
other techniques that could be used directly for optimiza-
tion planning.

3. use meta-heuristics or machine-learning to devise an al-
gorithm selection technique for planning.

RESEARCH PROBLEM

In this section, we address possible problems with accom-
plishing the research objectives.

With using meta-heuristics as a preprocessing to standard
techniques, there is an important issue of distributing the
computation time. Let ¢ be a problem instance, by time(t, h)
we denote the time required to solve the problem ¢, where h
is some information that can help us (like what algorithm to
use or how to configure it). In the preprocessing phase, we
try to find A which will help us the most. Time to find h we
denote by find(h).

In order for the preprocessing to have any positive effect,
equation 1 has to hold.

find(h) + time(t, h) < time(t, NoHelp) e

The optimization techniques are usually anytime, which
means that a longer run leads to a better solution. Such bet-
ter solution & would lead to smaller time(t, h), but if we

allocate to much time for the preprocessing phase, it may
not pay off as the equation 1 might not hold. Furthermore,
we don’t know a priori the value time(t, NoHelp) and it is
not easy to deduce time(t, h) either.

Another problem rises with the need of an evaluation
function. Meta-heuristics work with a population of solu-
tions and use an evaluation function to guide the search.
For candidate solutions h; and hs, we would like to know
time(t, h1) and time(t, ho) to evaluate the candidates. Get-
ting these values might take a long time as it requires to ac-
tually solve the problem.

For using meta-heuristics to solve the planning problems
directly, there are following issues that need to be resolved:
e MCTS simulations

When MCTS selects the most urgent leaf, it starts a sim-

ulation to evaluate that leaf. Such simulation should lead

to some goal state, where the resulting plan could be eval-
uated. Reaching a goal state from some given initial state,
however, is a difficult problem in general.

We don’t require the simulation to be an optimal plan

- suboptimal solutions are completely sufficient in this

phase - but we need the simulations to be very fast. In

other words, we need means to find suboptimal plans very
quickly.
e Genetic algorithms’ crossover operator

If we used GA for planning, it would operate directly on
the set of plans. During the search, GAs use crossover op-
erator which takes two candidate solutions and combines
them to produce another one. It is, however, difficult to
guarantee that two valid plans will produce a valid plan
during the crossover.

STATE OF THE ART

We provide an overview of the state of the art to all previ-
ously mentioned research topics.

Stopping criterion of the preprocessing

Published papers on preprocessing of planning problems
like (Edelkamp 2006; Haslum et al. 2007) use very simple
stopping criteria like a fixed number of steps. These tech-
niques don’t concern themselves with any reasoning about
proper distribution of computation time either.

Matter of designing stopping criteria (or rather restart-
ing criteria) is studied in the field of evolutionary optimiza-
tion (Solano and Jonyer 2007). Statistical methods already
exist which we believe can be modified to be used in the
preprocessing phase of planning problems.

Evaluation function for the preprocessing

Published papers on creation of pattern databases (Edelkamp
2006; Haslum et al. 2007) use various approximations of
time(t, h) as a fitness function. In general, there is a the-
ory of Estimating search effort which we can use to approx-
imate the time(t, h) value. Estimating search effort (Korf,
Reid, and Edelkamp 2001) tries to predict how many nodes
will A* or IDA* expand before finding a solution, how many
nodes will it expand in the i-th layer, what the average
branching factor is going to be and so on.



MCTS simulations

We described the problem with MCTS simulations in detail
in (Trunda and Bartdk 2013). Simulations work as random
samples of the search space, they should be fast and sim-
ple. In typical applications, they are realized by performing
random steps. In planning, however, performing random ac-
tions is not guaranteed to find a goal state and it’s not even
guaranteed to end.

In this phase, it is possible to make use of many stan-
dard planning techniques, for example heuristic estima-
tors. Popular heuristics used in modern planners cover:
Landmark-cut (Pommerening and Helmert 2013), Pat-
tern databases (Pommerening, Roger, and Helmert 2013),
Delete relaxation (Hoffmann 2011) and others (Helmert and
Domshlak 2009).

Several attempts have already been made to use a ran-
dom walk-based sampling for planning. The Arvand planner
proves this idea to be viable as it performs well on the IPC.

The problem of very fast suboptimal planning was re-
cently addressed by IPC. The latest IPC introduced an Agile
track, where the solution quality was not considered at all
and the only criterion was the computation time required to
find a plan.

Search operators that combine valid solutions to
different but still valid solutions

This problem has been intensively studied in the field of
evolutionary optimization (Simon 2013) and also several
attempts have been made to use GAs directly for plan-
ning (Westerberg and Levine 2000; Brie and Morignot
2005). Most popular approach is to use post processing -
after creating the new candidate solution, it is checked for
validity and if not valid, it is replaced by the nearest valid
solution.

Another way of dealing with this problem is to introduce
a transformation on the set of all candidate solution which
would map the subset of valid solutions “together” and then
the search would only operate on that subset. We believe that
such transformations (sometimes called indirect representa-
tions) (Sebald and Chellapilla 1998; Rothlauf 2006) have a
great potential to be used in optimization planning.

Overall design of a hyper-heuristic based planner

So far, no competitive planning system based on hyper-
heuristics has emerged. There are, however, portfolio-based
planners, that use several different algorithms and a policy
to choose from them (Gerevini, Saetti, and Vallati 2014).

METHODOLOGY

We will here present our ideas for dealing with the research
problems mentioned in the previous section. We will use the
following notation:

e ¢ be a planning problem instance
e S be the set of all valid sequences of actions of ¢
e P C S be the set of all plans (leading to a goal state)

e f: P — R be the objective function to be minimized

e solve(t, h) be a procedure to solve ¢ with a helpful infor-
mation h (as defined earlier) returning p € P

e time(t, h) be the time requirements of solve(t, h)
e H be the set of all possible values for i

Standard forward search planning techniques operate on
the set S. They start from short sequences trying to prolong
them in order to achieve some p € P. Meta-heuristic opti-
mization techniques (like GAs) operate on the set P and use
f(p) as a fitness function. They assume that candidates from
P can be easily obtained.

Hyper heuristics, on the other hand, operate on the set
searching for solutions h. To evaluate the solution h € H
they use f(solve(t, h)) as a fitness function. Such approach
has an advantage of being able to adapt the search strategy
to the problem instance.

We believe that standard forward search planning tech-
niques are most suitable for domains where goal states are
very sparse (i.e. | P| is small) and finding some p € P among
S is difficult or in cases where we have to guarantee opti-
mality. Meta-heuristics, on the contrary, should be effective
on domains where goal states are dense (i.e. large |P|) and
finding optimal solution would take too much time.

Meta-heuristic planning algorithm

We would like to use standard Evolutionary Algorithm for
optimization planning. The issue remains how to guarantee
that search operators (like crossover and mutation) will pro-
duce valid plans.

One way to solve this problem is by a penalty function.
We extend the function f to the whole S so that all s € S
will be considered a valid solutions. We will devise means
to evaluate invalid solutions in a way which would guide the
search towards valid solutions (i.e. invalid solutions that are
close to valid ones have a better evaluation that those that
are far from any valid solution).

For this task, we will make use of heuristic distance esti-
mators to tell us how far from some valid solution the can-
didate solution is. The new objective function ' : S — R
will be a weighted sum of f and a heuristic distance esti-
mator, which penalizes invalid solutions. The weights in the
formula as well as the type of heuristic estimator used will
be parameters of the algorithm. These parameters may later
be subjected hyper-optimization.

Designing a hyper-heuristic based planner

We would like to design the hyper-heuristic planner using
MCTS algorithm. The system should be able to find the most
suitable search algorithm as well as to manage the distribu-
tion of CPU time between the search for searching strategy
and the search for the solution.

The system will be based on a portfolio of low-level plan-
ning algorithms which will be used in the simulation phase
of MCTS. These low-level algorithms should have the fol-
lowing properties:

e be able to solve a satisficing planning task

e be very fast but may find (even vastly) suboptimal solu-
tions



o the portfolio should be diverse and several copies of the
algorithms should be considered with different parame-
ters.

As those low-level planning algorithms, we will use:

e Standard planning algorithms - A*, IDA*, weighted-A*,
enforced hill-climbing and others combined with standard
heuristics

e “non-standard” search algorithms - beam-stack search,
symbolic search and others (Edelkamp and Schrodl 2012)

e meta-heuristic optimization algorithms including the one
described in the previous section

e planners from the Agile track of the IPC

We will use MCTS in a standard way for planning as
in (Trunda and Bartdk 2013), that is, the nodes represent
world states and the edges represent state transitions. The
root represents the initial state and simulations should end
in a goal states.

We will enhance this tree in the following manner: to ev-
ery leaf node, we add new successors - one for each low-
level planner in the portfolio. We will call them virtual
leaves. The selection phase will work in the same way and
select the most urgent virtual leaf - which means that it se-
lects the (real) leaf and then an algorithm to use. During the
simulation phase, the selected algorithm will be used. After
the expansion, however, the virtual leaves will not remain in
the tree as inner nodes, but instead they will move on to the
newly added leaves.

In the figure 3 there is an example of an enhanced MCTS
tree. sg is the initial state, s; to s3 are other states. a; to
as are actions and Algl to Alg3 are virtual leaves, Alg2 of
so is the selected leaf. In the figure 4, there is the tree after
expansion. New states that are reachable from s, are added,
virtual leaves are copied to the successors together with all
statistical information they were holding.

,/Jr\ ,/#\

alg1 alg2 alg3‘ alg1 alg3| |alg? alg2 alg3

Figure 3: Example of an enhanced MCTS tree before expan-
sion.

This way only the real nodes remain in the tree (therefore
saving space), but the algorithm is still able to use different
search algorithms in different parts of the tree. Inner nodes
will accumulate all the simulation results no matter of the
low-level algorithm that was used. This behaviour is desired,
since the simulation should be random and the results of any

A
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alg1 alg2 alg3 /
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Figure 4: Example of an enhanced MCTS tree after expan-
sion.

of the low-level algorithms could theoretically by generated
by a random walk so it makes sense to accumulate the re-
sults.

CPU time management It is important to keep track of
how long the simulations take. We mentioned that the low-
level algorithms should be fast, but it is not possible to guar-
antee this priori for all domains. If we selected a wrong algo-
rithm, the single simulation might well take more time than
finding an optimal solution by the right algorithm.

We propose the following solution: we set a time limit on
how long the simulation can take. This limit will be low at
the beginning and will increase in time to allow more so-
phisticated algorithms in the simulation phase. During the
selection phase of the virtual leaves, we will consider not
only solution quality, but also time, that the simulations took
to penalize the algorithms that took too long.

Techniques, where the search algorithm regulates itself
during the search, fall into category of autonomous meth-
ods (Hamadi, Monfroy, and Saubion 2012) that are becom-
ing popular these days. We believe that MCTS is a suitable
platform for autonomous search and we would like to incor-
porate more of these techniques into the final design.

EXPECTED OUTCOME

The outcome of the PhD. thesis should be new theoreti-
cal and practical results about using the methods of soft-
computing in planning. Specifically:

e creation of a new planning system based on optimization
meta-heuristics

e introduction of the hyper-heuristic principle to planning,
creation of a stronger planner than simple portfolios

e contribution to algorithm selection problem in planning
(especially identifying meta-features of search problems)
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